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DENUMERABLE STATE MARKOVIAN DECISION PROCESSES--AVERAGE

COST CRITERION

by

Cyrus Derman

io Introduction

We are concerned with the optimal control of certain types of

dynamic systems. We assume such a system is observed periodically at

times t = 0, l_ 2, .... After each observation the system is classified

into one of a possible number of states. Let I denote the space of

1.
possible states. We assume I to be denumerable. After each classifi-

. cation one of a possible number of decisions is made. Let Ki denote

• the number of possible decisions when the system is in state i, i _ I.

: The decisions interact with the chance environment in the evolution of

the system.

Let {Yt) and {_),_ t = 0, l, .o. , denote the sequences of

states and decisions. A basic assumption concerning the type of systems

under consideration is that

P(Yt+I = JIYo' Ao' "'" ' Yt = i, At = k] = qij(k) ,

for every i, J, k and t; i.e., the transition probabilities from

I one state to another are functions only of the last observed state and

the subsequently made decision. It is assumed that the qij(k)'s are

I. known.

I: 1i

li "
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A rul___eor _ R for controlling the system is a set of func-
tions [Dk(Y , _o' "'" ' Yt)} satisfying

o ..<Dk(Yo,%, ..., Yt)..<i , ]

]
for every k_ and

Ki .i

Dk(Yo' "'"' =i)=i,
k=l _ •

for every history Yo' Ao' "'" ' Yt (t = 0, i, ... ). As part of a [i'
controlling rule, Dk(Yo, _o' "'" ' Yt) is the instruction at time t

to make decision k with probability Dk(Yo' _o' "'' ' Yt) if the ]

i particular history Yo' _o' "'" ' Yt has occurred. We remark that

! . although we have assumed a kind of Markovian property regarding the _]

behavior of the system, the process CYt}, or even the joint process ]

[Yt' At}' is not necessarily a Markov process_ for a rule may or may not

i depend upon the complete history of the system. ].We further assume that there is a known cost (or expected cost)

Wik incurred each time the system is in state i and decision k is

made. Thus, we can define a sequence of random variables (Wt_, ]
_ t = 0, i, 2, ... by Wt = Wik if Yt = i, At = k, t = 0, i, ... .

For a given Yo = i and rule R we can talk about _Wt, provided it ]

exists. Let

i 71
T

_ QT,R(i) = T +'---_t= t ' when Y = i ;

2
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i! thus, QT,R(i) is the expected average cost per unit time up to time

period To Let QR(i) = lim %Q_,R(i)'i_ the limit exists; otherwise,W-_=

let QR(i) = llm sup QT,R(i)oT-_=

In this paper we are concerned with the problem of finding an

optimal rule R; explicitly, a rule R, for a given i, which minimizes

QR(i) over all possible rules. d

It is convenient to consider sub-classes of the class of all possi-

ble rules° Let C denote the entire class of rules° Let C' denote

the sub-class of stationary Markovian rules; i°eo, a rule R is a

member of C' if Dk(Y, &o' @°° ' Yt = i) = Dik, independent of

Yo' Ao' °°° ' &t-I and t° A rule R c C' is completely defined by

the set of numbers _Dik), k = l, .oo , Ki, i ¢ It i.e., a fixed

randomized decision-making procedure is associated with each state. Let

I C" denote the sub-class of C' for which Dik = 0 or 1. The rules
in C" are stationary Markovlan, but non-randomized.

We point out that if R E C', the resulting stochastic process [Yt),

t = O, i, ... , is a Markov chain with transition probabilities

v

f Kt

o DikqiJ(k)k=l

i
I If the state space I is finite it is known (see Gillette _8] and

Derman [5]) that QR(i) can be minimized over C by a rule R _ C". -_,

I Computing methods using dynamic programming (Blackwell [i], Howard [9])

i I or linear programming (Manne [12]) exist for obtaining solutions.

For I infinite, and specifically denumerable, little has been

• [ published regarding existence and the nature of optimal rules.
Iglehart

lr-
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_L

[,OI and TayLor [1L_] have considered the average cost criterion for the ._

spectaz cases of inventory and replacement systems allowing for an _

infinite state space. Blackwell _2!, [3]_ Derman [6], Maitra [ll],

Strauch Ii3] have considered infinite state spaces in dealing with a ]

discounted cost criterion (Blackwell and Strauch also consider a total

1
expected cost criterion).

Of some related interest is _he result (Blackwell [3] and Derman -.-

:I
i *[6]) that for a discounted cost criterion 4discouns factor strictly less

th_n one) &_Jd Ki < _, i ¢ I, and (Wik) bounded, an optimal rule

always exists and is a member of C". If either condition is violated#

an optimal rule may not exist. A specific question then arises: Under i_

the same conditions, does an optimal rule always exist for the average --_

cost criterion, and, if it does, is there always an optimal rule in C"?

In section 2 we present counterexamples showing that this is not the
|

. case. One example shows that no optimal solution exists_ another, that

an optimal solution exists but is not a member of C"--it is a member "I_

of C' - C. In the remaining sections we are concerned with obtaining

.... ZI
conditions under which a rule in C_' is optimal and for the convergence

f

of an irLfinite state version of the policy improvement (Howard [9]) "_I

computational procedure to the optimal rule.

2. Counterexamples il

The first example, due to Maitra [ii], shows that under the !I

assumpt ions
-I

t;

|":
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I and

(B) [Wik) is a bounded set _£ numbers,

an optimal rule need not exist.

Let l consist of the states 0, 01, lj 11, ... . Sappose

Ki = 2, i = 0, l, 2, .°. and Ki = l, i = 0', Lf, 2I, ... where

qi,i+i(1) = l, qi,i_(2) = l, and ql,i,(1) = 1 for i = 0, _, ....

Assume Wlk = L for i = 0, l, .o. and k = l, 2; Wi'l = wi for

i = 0, l_ ... where (wi) is a decreasing sequence of positive real

numbers converging to zero. In words, the system, when in state i,

either proceeds to state i+l or i' depending on the decision made;

the cost is one unit. When the system is in state i' it remains there t

at a cost of wi units per time period.

Assume Y = 0. Without entering into the details it is clear that
O

I we can choose an R such that QR(0) is as close to zero as desired.
i

However, any rule R for which there is some positive probability that

I decision 2 will be made at some state i yields a positive expected!

average cost. On the other hand, the rule R prescribing decision 1

at all states has QR(0) = 1. Thus, no rule can achieve a zero expected ,

I average cost and, consequently_ no optimal rule exists.
The second counterexample shows that, even under conditions (A) and

I (B), an optimal rule need not a of By resorting a
be member C". to

randomized stationary Markovian rule one can do better than remaining in -_

the class of deterministic stationary Markovian rules.

I Let I be the state space consisting of the non-negative integers.

Suppose K° --i, Ki = 2, i = i, 2, ... , with qoo(1) = O,
i

i %i(I)=gl>o, i= i,2,..._ qli(1)= i, qio(2)=l,i=i,2,....

I 5 ,
lit
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Let Wik = wi, i = O, i, ... where {wi} is a decreasing of positive L_

real n_mbers converging to zero. Thus, the system, when in state O, ._

progresses to state I with probability gi > O_ when in state i _ O, _

it either remains in state i (if decision I is made) or it reverts to ]

state 0 (if decision 2 is made). The further the system is away from

state 0 (i.e., the larger the valae of i) the less the cost.

Assume Yo = O. Let R be any rule in C"; let SR be the set |
_ = i

of states for which Dil = 1. If i e SR, then Yt = i implies _,

for all t' > t; if i _ SR, then Yt = i implies Yt+l = O. Suppose I
4m

SR is non°empty; _hen it can be shown that

/ -%(0)= giwi E g >o .
i_SR

If SR is empty, then "[
.!

tw + _
o giwi _.i=l_co_-_ >o .

2

T
In either case %(0) > O. Thus, for every R _ C", %(0) > O. Let

iiR ¢ C' be such that 0 < Di2 < l, i c I, and _ gi/Di2 = _. State 0
i=l

is a recurrent state of the resulting Markov chain {Yt} since .|

' P{Yt = 0 for some t > OIY 0 = O] is equal to one. However, the mean --

_ recurrence time of state 0 is l+ _ gl/Di2 = ®; hence, 0 is a null "I
i=i I

recurrent state. From _rkov chain theory (see Chung [_]) it follows

that all states are nuAl recurrent states. Then, for any state io, i!

!

6

iF

1966015675-008



ii

I ® T

• 1 Z Z wiP_ !Yo o}%<o_= _im_+---i Yt= i --
i T_ ® t=O t=l

i

= lira__i _ --"ilY° = O] + _ _ wIP(Yt..--iIYo=O
T-_® T _ I i= t=i i=i +i

o

i
o T

< w _ lim 1 _ P{Yt = liYo = O}- o T+I
i=O T-_ ® t=O

® T

+----_l_ PCYt ilYo o_wi lim __ = =T
o T-_ i=i +i t=O

O

T

l Z PCYt > ::wi llmT+----Y_ iolYo=o}
0 T-__ t=O

= w i ,
O

i i"PCYtilYo--o)--o.since i, being null recurrent implies lim T +-----_ =
T-_® "-3

However, i° is arbltr_ry and (wi) decreases to ze_ hence,

%(0):o.
I
[ The question as tc whether, urJder assumptions ,'.A,and (B), there

, v

, may exist a rule R* c C - C' such that QH,{ I. _'i_:R(i) for all

R ¢ C' remains to be answered.

3. Sufficient,,Conditions

In this section we arrive at sufficient conditions for the existence

of an optimal rule and for it to be a member of C". Our conditions are

motivated by the policy improvement procedure and our proof follows that

of Iglehart [i0]. An alternative proof of the same (slightly stronger)

t.
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re_._it appears, as well as an application of the results of this paper, i

in Derman and Lieberman [7]- The conditions are summarized in

]
Theorem 1. If Conditions (__ ar_l___ hol___dand if ther_e--------exists_a-.-------b°unded

]
set of numbers [g, vj}, J e I, satisfying

= min (Wik 4 _ oij(k)vj_ ,
(i) g + v k J¢I "

!
then there exists an H* _ C" suc__htha____+ fo_._ra__ i and ev_ R _ C

R* is the rul____ewhich, for each i, prescrlbes the decislon tha__._tminimizes

the _ sld._eof (I). [I

Proof: Let ki, i _ I, denote the decision that minimizes the right "i

• side of (i) (or, if there are several minimizing decisions, let ki be

iany one of them). Let R* denote the rule which prescribes decision

i_ Thenki when(1)becomesin state i, i ¢ I. Let PiJ = qij(ki ) for every i_ J ¢ I. iI W

I
(2) g+v I = Wiki+ _ , i _ _ .J_i PljVj -"

i On mL_tiplying (2) by Yi'i' the t-step transition probability from I'

8 ]

|

='I "T-, _Immmm
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I

(t)vi i = _ -(t)wl ik + _ (t)i j_i
g + _ Pi' _i' Pi' PikVj

i i¢I i¢I i¢I

(tJw + _ (t+l) i' c I
= Pi'l ik Pi'J vj , •

_ i_l J_l

The latter equality involves an interchange of the order of summation

J_ Justified by virtue of the assumption that the sequence [vj) it

" bounded. On averaging over t in (3) and canceling in the limit, we
get

i Z Z (t)w-(4) g = iim T +-----[ Pi'i ik.

! T_ t=O i¢I l

= i' el.QR.(i'),
1.

Thus, g is the expected average cost per unit time under R*. We now

show that R* is optimal. Let gn(i), n = O, i, ... satisfy

U (5) go(i) = min Wik , i e I
k

gn+l (i) k ±k qiJ . '

Jel

that is, gn(i) denotes the total expected cost incurred over the
periods O, l, ... , n operating optimally. Because cf assumption (A),

gn(i) is well defined. We shall show that there exists an M satis-

fying

(6) ng + vi - M< gn(i) < ng + vi + M , i c I

T



for n = O, l, 2, .... For n = 0 and 1 (6) holds since Ivi} and

_Wik) are bounded sequences. Assume (6) holds for n < N. Then by (5),

(6), and (1) we have 'i

gN+l(i) --<mink ik + _ qij(k) Ng _ vj + !j_I

+ +Ng+M= min ik qij
k jcl

= (N+ l)g + vi + M , i _ I ,

the right inequality of (6). The left follows in the same way. Thus

(6) holds. "i

Let R be any R _ C and let hn(i) be the total expected cost

incurred over the periods O, i, oo. _ under R. Since gn(i) is the _!

result of an optimal rule for those periods_ we have, using (6), that _:
!

lim inf _hn(i) > lim_gn(i) ''
n -- n

11--)_ n--)_ _ _ r.

J .

1=g, ieI .
" ' w

hn(i) "IThis proves the theorem since QR(i) > lim inf--_ o
n-_

We point out the following !I

Corollary: Unde___rth__econditions of theorem l, ign(i) -ng I <2 M ii

fo__rev_ n.

|
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i 4. _Improvement and Convergence

I This section is devoted to seeking conditions under which a policy
improvement procedure can be effectively used° A condition that we

l shall need to is
assume

(C) For every R _ C" the resulting Markov chain is positive

I recurrent; i.e._ all states belong to one communicating class

I and are positive recurrent states (see Chung [4]).

Let R (make decision ki at state i) be any rule in C". Suppose

(D) There exists a'bounded set of numbers [g, vj), J c I,

satisfying (2).

I. Leb R' (make decision k_ at state i) be defined as follows: Set

_ k_ = ki for each i such that

holds. Assume the set of states such that (7) does not hold is non-

empty (otherwise the conditions of theorem 1 would be satisfied). For

at least one state i not satisfying (7) let k! be such that
I

Jgl Wiki J_l qij(k)vj

[
Denote by I' the set of states where (7) does not hold and for which

.-II k_ is chosen to satisfy (8). For all states i _ I', let k_ = ki•

(Here, we allow that k_ = ki even through (7)does not hold. Later

F we shall not allow this. ) We can assert

| ,'

iY_ [ II Rim I | I _ Ililll | ! I! • | _ _ i lilli
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Lemma lo If (A), (B), (C) an___d(D) hold, the____nfo___ra__ initial state i,

gR,(i)< %(i).

Proof: Let Pij = qij(k_") (i, J _ I)o Let ci, i c I, be the differ- _[

ence between the right side and Left side of (8)_ thus, _i > 0 if .._

i c I_ and _i = 0 if i _ I_. For any i c I and t we get, using -"

(2), that -i

Pli i Pli " (Wiki; jel PijVji_I icI

g + _ (t)v- _p(t) w . _ (t+l) "_
= Pli i li" iki, P!J vj • j 'icI JcI

4
On averaging over t : O, ... _ T and letting T _ we get (since -"

the ci's are also bounded) i

1 _ 0 _;) 1 _ _] (t)w.
(9) _ _. lim T +--_ P = g " lim T +-'---_ Pli i_.

icI i T_ _ t= T-.= t=0 i¢I z'

= g- %,(i). ].

However, under assumption (C), T-_limT+----_= t=_O pit)>0 for every

i _ I. Therefore, the left side of (9) is strictly positive since at 1
J

least one Ei is positive. Thus

QR,(1) < g = QR(1) , 1 c I , I

and the lemma is proved. I

!

f
:1
_'_-_7"-" _ _ " _- "_-J" J"_--_'_. 2 _i I_ __ I ..... _ " i ""_i--_ _ I m I I m
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We remark that the amount of improvement obtained in changing from

R to R' is precisely _ _icl where _i}, i c I, are the steady
i_I

state probabilities of the Markov chain with transition probabilities

_Pij?o

We have directly

Theorem 2: Unde_.._rth__econditions of lemma i, if R _ C'_ i__soptimal

over C'_,then it is o_timal over Co

Proof_ If R is optimal over C" I', then must be empty by lemma i.

Therefore (1) holds and theorem 1 applies@

We shall make use of a further condition@ L

(E) For every R _ C" there exists a set of real numbers

R

{gR vj), J c I satisfying condition (D). The numbers
R

-(gR vj}_ are bounded uniformly over j c I# R c C"o

We then have the following existence

j,
Theorem 3: Suppose (A), (B), (C), (D) and (E) hold, then there exists

i ru"e R* _ C" which is optimal over C.

Proof: For any R ¢ C" let WiR and qij(R) denote the values Wlk

and qij(k) under R for each i _ I@ Then with this notation (2)

becomes

Ii R C"Let g* be the greatest lower bound of all g , R ¢ . Let {Rn),
R

i n = i, ... be a sequence of rules in C" such that lim g n = g..

1-
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Because of the uniform boundedness condition on Ivy) and because C" -_

is compact (Tychonov's theorem) there exists a convergent subsequence _i
Rnv

[Rn }, v = i, 2, .°. such that lim vj = v_, J e I, where Ivy}

is a bounded sequence. Let R* = v_limRnv (Note: Since ki < _, [Rnv) i

converges to R* means that qij(Rn ) : qij(R*) for sufficiently large

V). On letting v _ from (10) we get , •

(ii) g*+_i= lira v �vi

_w _ qij Rnv vjnv} I
= lim iR + ( )
V_ _ nv J¢I

JeI

R i
n

(Rnv)Vj v qij(R*)(Thefactthati_ _ _iJ = 2 _ iseasilysho_n.)
• V-__ J¢l J_I 1

Thus [g*, v_), J _ I is a bounded set of numbers satisfying (2) (or
R* R*

(i0)) for R = R* _ C". That is, g* = g , v; = vj , J e I. Now

suppose (I) does not hold when R* is the rule. Then from lemma 1 an

improvement is possible_ contradicting the fact that g* is the greatest

R .I
lower bound of all g , R ¢ C". Thus (I) must hold and by theorem i,

tR* is optimal over C.

Since the policy improvement procedure [9] involves solutions to -._

(I) and (2) and converges to an optimal rule in the finite state case,

it is of interest to provide a procedure and conditions for convergence _

in the denumerable state case. Let R (make decision ki at state i,

i e I) be any rule in C". We define an iteration of the _ il

]9660]5675-0]6



improvement procedure fo___rdenumerable state__sas the transformation from

R to R _ where the decisions {k_} of R' are decisions for which

* are minimized° The term "improvement" is Justified

j_l

by lemma l_ Note, that in our definition we now insist upon all possible

improvements to be made in each iteration° The policy improvement pro-

cedure is a sequence of policy improvement iterations starting from any

initial rule R _ C"o Before stating conditions under which a sequence

of policy improvement iterations converges to an optimal rule we prove

another lemma °

T

i _ P_Y+ = JlYo i_, i, J £ I, for eachLet _ij(R) = lim T +----_ =T_ _ t=O

R c C"o We shall utilize the following condition:

(F) For every J c I, R i_el_ij(r)_,_ >0.

For any E _ C", let

R <w + _ qij(ki)vj_- (Wik_ _ j¢_l qij(k_)vj>
I ci = iki J_l

I = g + vi " ik_ * _qij(k; ) R , i c I ,

I where {ki}, i ¢ I, are the decisions of R and [k_], i _ I, are the

decisions obtained from R by a policy improvement iteration.

1 "
Lemma 2: Assume conditions (A), (B), (C), (D), (E), and (F). Let _._

= R e C" be arbitrary, and [ } be a sequence of _ improve-tt I ...... Rn ....
ttn _:

ment iterations; then, for each i ¢ I, llm _i = O.
n_@@o

]9660]5675-0]7



I

Proof: Under assumption (C), for each n = I_ 2, o.. _iJ (Rn) = _i(Rn)' I

the steady-state probability of state i under rule R . From the

lremark following lemma i we can write_ for each n,

!
Rn Rn+ I : R |

g - g = _ _itRn+l)_i n o

ieI I'
R

Since the left side tends to zero as n -_® ( iim g n exists since

[g is a decreasing sequence), so must the right side. However, since

Rn Rn

ei _> 0, it follows from condition ('F)that lime i = 0, i g I. j

We can now state

Theorem 4: If conditions (A), (B), (C), (D), (E)a_nd (F)hold, the_n

ii_ any RI R e C"= , t__hel_ _ procedure converges to a

rule R* ¢ C which is ot_ ove_____rC.

-- i
• Proof: Let [Rn] be any sequence of rules obtained under the policy

improvement procedure with RI ¢ C" arbitrary. From compactness I:,

considerations it is possible to choose a subsequenceRnvof rules (Rnv) , .1

v = i, 2, ... such that lim gRnv = g*, llm vi = v_i (i ¢ I), i

lira_ =0 (i ¢ I), and llm R = R*. For any R , equation (i0) {
V-_ _ V_ _ nv nv l
holds. On letting v -_ _ we get

(12) g* + v_i = WiR . + llm Z qlj(Rnv)VJ , i e I .v-_® J¢l ' --

For a given i, for v large eno,_h, qij(Rnv) --qij(R*); thus, from
R* R* I

(12) we get that g* - g and v_i = vi _ i c I. Clearly_

16 _,
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I. R

(13) g* + v_i-->v--_lim_sup mink ik + _qij , i c I .

R
However, by definition of ¢i' we nave, for each v,

R R R R

n n {w _ J nv} ¢Inr v v + _ ql_ + v{ (IS) g + vi <min ik (k)vj , i E I .. k

Therefore, from (13) and (14), it follows, using lemma 2, that

Rn

' (15) g* + v_i= lim min + _ (k)vjql4 , i ¢ I .
JcI

However, for each i ¢ I and k

R

llmmin{wlk + _ qij(k)vjnv}
V-__ J_l

v-*_ J¢I

{ .
so that from (15)

|
l k V-_® J_l

I I --_ ik+ Z _lj(k)•i k J_1

i But, for k chosen in accordance with rule R*, equality holds; hence,

(i) must hold and theorem 1 applies. This proves the theorem.

Ii

I! "
"_I,_- i -i I I _.. 'L_._]I t.... IIIIII

_% "- I IIII nI II iI
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